
Overview

Key Findings

Recommendations

Software engineering leaders responsible for building products and platforms must:

Licensed for Distribution

Innovation Insight for Internal Developer Portals
Published 1 February 2022 - ID G00761445 - 12 min read

By Manjunath Bhat, Mark O'Neill, and 1 more

Product teams often struggle due to disparate tools and disjointed workflows as they

accelerate digital transformation. Software engineering leaders leading platform

teams must establish internal, self-service developer portals to enable consistency

and scale cloud, agile and DevOps initiatives.

Improved developer experience is a key factor in attracting and retaining software

engineering talent, as well as more effectively delivering software.

■

Platform teams enabling cloud adoption must enable rapid innovation while

implementing governance, security and compliance controls. These two goals often

conflict because traditional approaches to cloud governance controls stifle speed and

agility.

■

The adoption of developer portals will suffer unless they continuously adapt to

changing development needs, architecture patterns and deployment models.

■

Improve developer experience and effectiveness by establishing internal developer

portals to streamline the software delivery life cycle and support reuse, sharing and

collaboration.

■

Enable governance without sacrificing agility by using developer portals that provide

self-service cloud access through built-in guardrails while still enabling rapid delivery

and innovation.

■

Continuously innovate portal capabilities by appointing a platform owner for the

developer portal to manage its roadmap, gather feedback and market its capabilities.

■



Strategic Planning Assumption
By 2025, 75% of organizations with platform teams will provide self-service developer

portals to improve developer experience and accelerate product innovation.

Introduction
Software engineering leaders increasingly focus on improving developer experience and

removing friction from the software delivery process. Improving developer experience

enables software engineers to focus on delivering innovative software and delighting

customers. Developer experience is important because it improves flow in the complete

software delivery life cycle.

Most organizations use a complex collection of platforms, tools and frameworks across

different layers of the technology stack. This internal maze of technologies creates

unnecessary overhead, duplicates effort and hurts developer productivity. As a result,

developers end up doing nonessential work to manage the overhead. Developer

productivity and happiness requires removing roadblocks, and tool complexity is one of

those roadblocks.

How can software engineering leaders help to minimize friction and maximize flow in the

design, development and delivery of software? Internal developer portals provide an

extensible, configurable and customizable framework that can be used to abstract away

complexity in design, development, deployment and postdeployment (operations)

workflows. Figure 1 depicts foundational capabilities for such a portal.

Figure 1: Internal Developer Portals Unify Disparate Platform
Capabilities



Software engineering leaders are asking, “How can we build an internal development

platform that enables us to publish and discover shared artifacts, including APIs,

vendor-procured and open-source software, collaboration and DevOps automation tools

and I&O resources?”

Internal developer portals provide an answer. These portals enable software engineering

leaders to create a versatile “app store” that increases software reuse, improves the

developer onboarding experience, streamlines software delivery and facilitates knowledge

sharing.

Platform teams build, own and operate the developer portal. The portal improves

developer experience by providing self-service access to platforms and tools to manage

the software development life cycle. Figure 2 depicts the positioning of internal developer

portals and their value to product engineering teams.

Description
Internal developer portals enhance developer experience by reducing friction throughout

the software delivery life cycle. Developer portals streamline the development,

Figure 2: Internal Developer Portals Help Streamline the
Software Delivery Process



deployment and life cycle management of software artifacts. They integrate with

software delivery platforms to enable continuous delivery and infrastructure automation

tools for abstracting away the underlying infrastructure complexity.

Integration with documentation tools, source code and artifact repositories enables

organizations to adopt and scale innersource practices. Finally, it enables continuous

operations by providing access to a toolbox via plugins for automation, monitoring and

incident management. Product and platform teams can use developer portals as a one-

stop shop for tracking visibility and ownership of services and components.

Internal developer portals are to developers what trails are to hikers

in a jungle. They provide a well-trodden path from concept to

customer value amid a chaotic mix of tools and practices.

Internal developer portals have three primary characteristics:

1. Abstraction: Abstract away the underlying complexity across multiple technology

layers — data, applications, open-source libraries, programming language and

scaffolding frameworks, infrastructure, and APIs.

2. Developer-centric view: Provide developers with visibility of the complete software

development life cycle — from ideation to operations.

3. Pluggable framework: Enable extension of the portal, either via plugins or APIs, and

empower developers to customize the portal for their own needs.

Backstage, created and open-sourced by Spotify, enables the building of internal software

catalogs and developer portals. The platform supports software templates (scaffolding

for new building software components) and technical documentation (writing

documentation in markdown). It also helps manage operational needs (monitor health of

services). The plugin architecture makes the platform extensible to integrate with the rest

of the IT infrastructure (e.g., access management, container management and API

management). See Figure 3.

Figure 3: Backstage Developer Portal Homepage



In some organizations, platform teams choose to build their own internal developer

portals. Figure 4 illustrates an example of such an internal, self-service developer portal

built by the adidas platform team.

Source: Spotify

Figure 4: Sample Self-Service Portal (adidas)



Internal developer portals should make it easy for developers to perform Day 0, Day 1 and

Day 2 activities throughout all phases of the software delivery life cycle (SDLC).

Day 0: Discover and Create: Provide ready-to-use templates to create new software

applications, services and components with embedded patterns, procedures and policies.

This includes a software catalog, technical documentation and integration with preferred

developer tooling such as code repositories and build automation pipelines.

Software Catalogs enable tracking assets and dependencies, and they provide “situational

awareness.” The catalogs aggregate metadata about services/components/assets such

as service owner information, deployment history, compliance policies, support model

and service level objectives.

Day 1: Integrate and Deploy: Provide a single dashboard to manage distributed

infrastructure across cloud and on-premises environments. The portal also supports

multiple DevOps automation tools and the ability to self-manage development and test

environments. Portals that are integrated with API management platforms make it easy

for developers to create, manage and explore API definitions and policies for any service.

Day 2: Operate and Improve: Provide access to service dependency graphs, operational

metrics, logs and traces. For containerized deployments, the portal can provide an

application-centric view into Kubernetes clusters (including pod visibility and

performance).

The team that owns, manages and runs the service will benefit from understanding the

interdependencies, how the services are performing, when the last change was deployed,

who owns it, who is on call and which alerting/incident response tool they should use.

Maintaining the metadata as part of the software catalog is crucial to deriving the desired

benefits from the developer portal.

Although developer portals can be tailored to different roles in the product team (such as

product owners, site reliability engineers or IT operations), the primary target role is the

developer. As shown in Table 1, internal developer portals improve developer experience

and simplify development workflows by unifying a disparate set of platform services and

tools into one cohesive portal.

Table 1: Developer Portals Should Simplify Access to Platform Services

Platform Services and
Technologies

Markets and Tool Categories



Development
environments

Data services

APIs

Security, governance
and compliance tools

Browser-based integrated development environments
(IDEs)

■

AI-augmented development and testing tools■

Tools for design■

Collaboration and technical documentation (how-to guides
for development workflows and product information)

■

Cloud AI developer services (CAIDS)■

AI orchestration platforms■

SQL/NoSQL data stores■

Data integration tools■

API gateways■

API management■

API developer portals■

API documentation■

API security■

Container security■

Application security testing (AST)■

Software composition analysis (SCA)■

Identity and access management (IAM)■

Secrets management■



Source: Gartner

Benefits and Uses
Software engineering leaders who use developer portals are seeking to achieve four

primary benefits:

Reduce Friction in Development Activities and Shorten Lead Time

Internal developer portals reduce friction by providing a unified experience depending on

your role. For developers, the portals enable self-service throughout the SDLC. This

Enterprise integration,
DevOps and RPA tools

Infrastructure and
operations
management

Reliability and
resilience

Value stream delivery platforms (VSDPs)■

Value stream management platforms (VSMPs)■

Low-code application platforms (LCAPs)■

Robotic process automation (RPA)■

Enterprise integration platform as a service (iPaaS)■

Data integration tools■

Container management■

Infrastructure automation (IaC)■

Policy management■

Incident management■

Application performance monitoring (APM) and
observability tools

■

Performance and resilience■

Reduce friction in development activities and shorten lead time■

Improve collaboration, visibility and ownership using innersource practices■

Minimize time to resolve incidents through efficient discovery and visualization of

services

■

Accelerate cloud adoption and drive business innovation with adaptive governance■



includes self-service access to preapproved software packages, CI/CD tools,

development and test environments and end-to-end visibility. Product owners can get

continuous feedback from production systems as they launch new features.

Improve Collaboration, Visibility and Ownership Using Innersource
Practices

Innersource portals enable developers to more easily learn about — and contribute to —

software projects within their organization that might interest them. They also provide

product owners with a forum to share their team’s work and encourage participation and

contribution from developers outside of their teams. The innersource portal serves as a

hub where developers can share and reuse knowledge; source code; and other existing

assets, services and APIs.

One of the biggest pivots that we’ve made with InnerSource is to switch from a governance

model to a self-service model. During the second year of our journey, we created our

internal InnerSource Marketplace and moved to a self-service model where engineers were

able to innersource their code by simply adding an “innersource” topic to their GitHub repo.

— Melinda Malmgren, American Airlines Developer Experience Group

Minimize Time to Resolve Incidents Through Efficient Discovery and
Visualization of Services

Developer portals can minimize incident resolution times by providing consistent visibility

into services and their interdependencies, including service owners. This enables a

scalable mechanism for SREs, operations and product teams to support a continuously

growing digital footprint without relying on tacit knowledge. Integration with the required

automation, monitoring and incident response tools enables product teams to take end-

to-end ownership, including reliability and resilience of production environments.

Accelerate Cloud Adoption and Drive Business Innovation With Adaptive
Governance

Development and operations teams have long engaged in a tug of war between the need

for autonomy and agility and the need for governance and control. Platform teams codify

the necessary security, cost and compliance policies for managing cloud infrastructure.

Product teams consume cloud services through standardized templates and blueprints in

the portal. This approach enables an adaptive governance model.

Risks
Organizations adopting developer portals must avoid three primary pitfalls:



Trying to Shoehorn Development Workflows Into Organizationwide
Blueprints

Developer portals serve as a “one-stop shop” where developers can find all tools,

playbooks, sample projects, templates and documentation. However, this does not mean

that all teams must have the same portal experience or the same standardized toolsets.

Rather, platform teams responsible for standing up the portal must provide ways to tailor

the portal based on the specific needs of the product teams. Otherwise, there is a risk of

forcing developers to use tools and workflows they are not comfortable using, which

hurts developer satisfaction and effectiveness.

Platform engineering teams must treat developer portals as a

product that continually evolves to meet agility, collaboration and

automation goals.

Building Developer Portals Without Involving Developers

Building developer portals without involving developers — the actual users — is a recipe

for failure.

This is because developers will try to work around systems that impede their workflows.

Worse, the portal’s capabilities can remain unused, rendering it ineffective. Platform

teams must treat developer portals as a product and continually evolve them based on

product teams’ needs. Thus, software engineering leaders must appoint a platform owner

to ensure it remains aligned with developer needs and market its capabilities within the

organization.

Assuming That Internal Developer Portals Are Turnkey Solutions

Developer portals are not turnkey solutions. They must be configured and integrated with

existing tools and systems to be useful and effective. The representative providers

mentioned in this research offer platforms that simplify building internal developer portals

by way of preintegrated capabilities, plugins and add-ons — so you don’t have to build out

the integrations from scratch.

Trying to Shoehorn Development Workflows Into Organizationwide Blueprints■

Building Developer Portals Without Involving Developers■

Assuming That Internal Developer Portals Are Turnkey Solutions■



Internal developer portals must also not be confused with API developer portals (which

are often part of API management platforms). Instead, they integrate with API

management platforms (e.g., Backstage integration with Apigee). Internal developer

portals have a broader remit and span the complete delivery life cycle, integrating

different aspects of building, delivering and operating software.

Adoption Rate
The adoption of developer portals is closely tied to improving developer experience while

addressing the need for adaptive governance. Therefore, the greater the maturity of an

organization’s DevOps and platform engineering practices, the higher their likelihood of

using a developer portal. Gartner frequently sees self-service ranked as one of the most

desirable attributes when organizations create DevOps maturity models. Organizations

adopting developer portals tend to have dedicated teams — often called “engineering

excellence,” “engineering productivity,” “developer experience” or “platform engineering”

teams.

Emerging open-source tools like Backstage.io and commercial providers such as

Humanitec, Calibo and Mia-Platform provide platforms to build self-service developer

portals. These platforms intend to obviate the need for organizations to build a portal

from scratch by providing a customizable framework. The platform enables easy access

to shared components, API documentation and templated workflows for software

developers.

Backstage.io maintains an open-source listing of adopters in its GitHub repository. 1

Backstage, a Cloud Native Computing Foundation (CNCF) sandbox project, offers a

subset of developer portal capabilities. Given its open-source roots, it has gained a lot of

interest and public visibility. For example, American Airlines was one of the earliest

adopters and built its internal developer portal (Runway) based on Backstage. 2

However, Gartner inquiries indicate that Backstage implementations may require

substantial effort in standing up the service. The lack of enterprise support for open-

source software can be a barrier to adoption in some organizations. SaaS providers of

Backstage, such as Roadie, are emerging to address this concern by eliminating the need

for hosting, upgrades and ongoing platform management.

Recommendations
Software engineering leaders responsible for building products and platforms must:

Improve developer experience and effectiveness by establishing self-service developer

portals to streamline software development, deployment and operations.

■

Enable adaptive cloud governance by using self-service developer portals to establish

governance and gain economies of scale while enabling rapid delivery and innovation.

■



Representative Providers

Evidence
1  backstage/ADOPTERS.md, GitHub.

2  Adopter Spotlight: American Airlines Demos Runway, Spotify Backstage.

 

Continuously enhance the portal by appointing a platform owner to define and manage

a product roadmap and market its capabilities to developers.

■

Establish KPIs for:■

Agility, such as developer onboarding time and lead time■

Reliability, such as change failure rate and mean time to repair■

Business outcomes, such as customer retention and increased revenue■

Automation, such as self-service provisioning of development and test environments■

 Atlassian (Compass)■

 Backstage (open-sourced by Spotify)■

 Calibo■

 Humanitec■

 LeanIX■

 Mia-Platform■

 OMNI Arsenal■

 Opsera■

 Roadie (Backstage as a service)■

 Wipro (devNXT)■

https://github.com/backstage/backstage/blob/master/ADOPTERS.md
https://backstage.spotify.com/blog/adopter-spotlight/american-airlines-runway/
https://developer.atlassian.com/cloud/compass/overview/what-is-compass/
http://backstage.io/
https://calibo.com/
https://humanitec.com/
https://www.leanix.net/en/
https://mia-platform.eu/
https://www.omniarsenal.com/
https://www.opsera.io/
https://roadie.io/
https://www.wipro.com/cloud/devnxt/
https://www.gartner.com/technology/contact/become-a-client.jsp?cm_sp=bac-_-reprint-_-banner


© 2022 Gartner, Inc. and/or its Affiliates. All Rights Reserved.

© 2022 Gartner, Inc. and/or its affiliates. All rights reserved. Gartner is a registered trademark of

Gartner, Inc. and its affiliates. This publication may not be reproduced or distributed in any form

without Gartner's prior written permission. It consists of the opinions of Gartner's research

organization, which should not be construed as statements of fact. While the information contained in

this publication has been obtained from sources believed to be reliable, Gartner disclaims all

warranties as to the accuracy, completeness or adequacy of such information. Although Gartner

research may address legal and financial issues, Gartner does not provide legal or investment advice

and its research should not be construed or used as such. Your access and use of this publication are

governed by Gartner’s Usage Policy. Gartner prides itself on its reputation for independence and

objectivity. Its research is produced independently by its research organization without input or

influence from any third party. For further information, see "Guiding Principles on Independence and

Objectivity."

About Careers Newsroom Policies Site Index IT Glossary Gartner Blog
Network Contact Send Feedback

https://www.gartner.com/technology/about/policies/usage_policy.jsp
https://www.gartner.com/technology/about/ombudsman/omb_guide2.jsp
https://www.gartner.com/en/about
https://jobs.gartner.com/
https://www.gartner.com/en/newsroom
https://www.gartner.com/en/about/policies/privacy
https://www.gartner.com/en/site-index
https://www.gartner.com/it-glossary/
http://blogs.gartner.com/
https://www.gartner.com/en/contact/general-contacts
mailto:Site.feedback@gartner.com

